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Abstract 

Semantic graphs can be used to organize large amounts of information from a number of 

sources into one unified structure.  A semantic query language provides a foundation for 

extracting information from the semantic graph.  The graph query language described 

here provides a simple, powerful method for querying semantic graphs. 

Semantic Graphs 

In a semantic graph information is represented by graph vertices that are joined to other 

graph vertices by edges.  The possible structure of the graph is described by an ontology 

that defines the vertex types, the edge types and how edges may interconnect vertices to 

form a directed graph.  The graph ontology also defines one or more attribute types for 

each vertex type.  For example, a vertex of type person might have the attributes “name”, 

“date of birth”, “city of birth” and “country of birth”.  The key attributes of a vertex 

should be chosen to uniquely identify a vertex in the graph.  Some semantic graphs also 

allow vertices to have non-key attributes that may take on multiple values and are not  

used to uniquely identify a vertex.  For a vertex of type person, an example of a non-key 

attribute might be “address”.  The non-key attribute “address” could have multiple 

values, since many people have lived at more than one address.  When vertices are 

published into a semantic graph, vertices with the same key attribute values will “fuse” 

(e.g., a vertex with a particular set of values will be represented in the graph once).   

 

The edges in the graphs discussed in this paper are directed.  There may be 

complementary edges, but bi-directionality in an edge is not required. 

                                                 
1
 LLNL technical report UCRL-TR-225447. This work was performed under the auspices of the U.S. 

Department of Energy by University of California, Lawrence Livermore National Laboratory under 

Contract W-7405-Eng-48. Funding provided by LDRD 06-ERD-009. 
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Querying a Graph Database 

A graph query does not add, remove or alter vertices or edges.  The result of a query is 

logically a “view” of the graph, filtered according to the constraints of the query.   The 

diagram below shows how a graph query function acts on a graph and produces a result 

that is itself a graph.  The result graph may consist of the empty graph (e.g., no vertices or 

edges), a set of vertices without edges or a set of one or more connected graphs. 

 

The graph query language described here does not alter the key attributes associated with 

a vertex or add or remove edges in the graph.   Nor does the query language include 

support for loading data into the graph. 

Query Language Design Goals 

1. The query language should be supported on both scalar and large scale distributed 

systems.  The query language should not rely on any particular underlying 

database technology. 

2. The query language should provide the features needed to build sophisticated 

graph queries.  These features should be as simple as possible to allow efficient 

query language implementation. 

3. A query operation should be able to operate on either the entire graph (referred to 

as the “base graph”, below) or on a sub-graph defined by another query. 

4. Implementation of the language should include as little software infrastructure as 

possible.  For example a graphical query interface should not be required to 

support the query language. 

5. The query language should allow new functions to be added to the language by 

simply adding the function syntax to the parser and support software.  There 

should be no impact from an addition on unrelated syntax.  Examples of graph 

functions include path traversal and strongly connected sub-graphs. 

6. The query language should support the features needed to act as  building blocks 

for complex graph algorithms. 

graph f 
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Graph Functions 

Overview 

The query language proposed here is built around functions which can be nested to create 

complex graph query operations.  The general form for a query function is: 

 
The optional NamedGraph assignment allows a unique name to be associated with the 

graph that results from executing the query.  This named graph can be referenced in 

another query.  The NamedGraph is an arbitrary quoted string.  Each NamedGraph string 

must be unique.  For example: 

 

If a NamedGraph already has an associated graph, it is an error to attempt to assign 

another graph to that name, as long as the graph associated with the NamedGraph string 

exists in the graph database.  If a named graph is not provided in the query, the query 

system will automatically generate a unique name for the graph that results from the 

query. 

When the information for a semantic graph is loaded into the graph system, a name for 

the graph and the associated ontology are given a name.  This graph name is used in 

queries that reference the entire semantic graph associated with the ontology.  The sub-

graph that results from a query on a graph will have the same ontology as the input graph.  

Queries cannot reference more than one ontology, although they can reference multiple 

instances of that ontology. 

In the query language, white space, formatting and character case are not significant.  

Queries are terminated by a semicolon.  The graph functions supported in the initial 

query language are: 

 

The union, intersect and diff functions logically act like binary operators, with two 

graph operands (which are the results of other graph functions). 

The filter, adjacency and pattern functions are given an input graph argument and 

calculate a sub-graph based on the other function arguments. 

Binary Graph Functions 

The binary graph functions union, intersect and diff each take two graph operands.  

These operands must be sub-graphs of the same semantic graph ontology.  A runtime 

[NamedGraph “=”] GraphFunction “;” 
 

“Ian 01/19/2005 15:03:234” = adjacency (“MyBaseGraph”, “country of interest”,  
                                    vertex  { person }, 
                                    edge  { any  }) ; 

GraphFunction ::= union      | 
                  intersect  | 
                  diff       | 
                  filter     | 
                  adjacency  | 
                  pattern 
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error will be reported if a query function references sub-graphs from different ontologies.  

For example, a binary graph function cannot have one operand that is an IMDB sub-

graph and another operand that is a PubMed sub-graph. 

Union function 

The union function takes two graph arguments.  The result of the union function will be 

a graph that combines the two graph arguments, where all of vertices are unique.  This is 

shown in the diagram below, where vertex identity is indicated by an integer value.  

Note: integer identifiers for vertices are used to illustrate the operation of graph union.  

Vertices in the graph are identified by a hash ID formed from vertex attribute values. 

 
Unless the two graph operands entirely overlap, the result of the union function will be 

larger than either of its input operands.   

 

The general form of the union function is shown below: 

 
The union below produces a graph (or set of graphs) that consists of the union of the 

graphs returned by the two adjacency functions. 
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union  ( GraphFunction, GraphFunction ); 
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Intersect function 

The intersect function returns the instances of vertices and edges that exist in common 

between the two graph arguments.  This is shown in the diagram below.  As in the 

previous diagram, the numbers are intended to indicate unique instances of vertices. 

 

 
 

An instance of an edge is determined by its source and destination vertices.  An edge will 

exist in the result only if instances of the source and destination vertex also exist in the 

result. For example, if a destination vertex is not in the intersection set, but the source 

vertex and edge are in the intersection set, the edge will be removed. 

 

The general form of the intersect function is shown below: 

 
The steps in calculating the intersect function are: 

1. Create a graph that consists of the vertices and edges that are shared by the two 

graph operands. 

2. Remove any edges that do not have a source and destination in the result graph. 

Diff(erence) function 

The diff function removes the vertices and edges that are shared by the two arguments.  

The operation of the diff function is shown in the diagram below: 

union (adjacency( “MyBaseGraph”, “research_test”, 
                vertex  { person, country }, 
                edge  { travels_to }), 
       adjacency( “MyBaseGraph”, “research_test”, 
                vertex  { person, organization }, 
                edge  { works_for });  
      );  
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intersect  (GraphFunction, GraphFunction ); 
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The general form for the diff function is: 

 

   
The steps in calculating the diff function are: 

1. Create a graph that consists of the vertices and edges that are not shared by the 

two graph arguments. 

2. Remove any edges that do not have a source and destination in the result graph. 

Graph Filter Functions 

Ontologies and Named Graphs 

An ontology defines the type and structure of vertices (e.g., the vertex attributes) and the 

connections between the vertices (e.g., edge types and edge connections). 

A data graph (referred to here simply as a “graph”) is a set of vertices and edges 

constructed from a data set, where the graph structure is constrained by an ontology.  

Each graph that is loaded into the distributed system has an associated name and 

ontology.  A base graph is a named graph that includes all of the vertices and edges 

loaded with a particular ontology structure.  Queries create sub-graphs that are, logically, 

views of this base graph.  The sub-graphs created by queries each have an associated 

name.  This name is either explicitly assigned in the query or is implicitly assigned by the 

system to internally identify the query result.  The ontology of a sub-graph is the same as 

the ontology of the input graph. 

A query may only reference graphs associated with the same ontology.  Queries across 

different ontologies will result in a run-time error.  Queries across ontologies are 

disallowed because the result graph would have no defined ontological structure.  A 

diff  (GraphFunction, GraphFunction ); 
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query may, however, reference two base graphs (e.g., graphs from different data loads) 

defined by the same ontology. 

With the exception of the binary graph functions union, intersect and diff, all functions 

in the query language operate on an InputGraph (or UniverseGraph) argument, and 

produce a result which is a sub-graph of this InputGraph (or UniverseGraph).  The 

InputGraph argument is either: 

1. A unique string that is associated with a base graph or with a previously 

calculated sub-graph. 

2. A query function.  For example, a filter function may be used as the 

UniverseGraph argument for a pattern function. 

Filter 

The filter function filters its InputGraph argument based on the VertexFilter and 

EdgeFilter parameters. 

The filter function is outlined below: 

 
The VertexFilter and EdgeFilter expression define constraints for the graph elements that 

will be included in the result sub-graph.  The VertexFilter and EdgeFilter expressions are 

used in other functions, in addition to the filter function. 

 

Both the VertexFilter and EdgeFilter arguments can be defined by the reserved word any 

(meaning any edge or any vertex). 

Each vertex or edge type may have an associated where expression that references the 

key attributes.  For example: 

VertexFiler and EdgeFilter 

VertexFilter ::= [ not ] vertex  VertexSpec 
EdgeFilter ::= [ not ] edge  EdgeSpec 
VertexSpec ::= “{“ any  | EntityDefList “}” 
EdgeSpec ::= “{“ any  | none  | EntityDefList “}” 
EntityDefList :: = EntityDef (“,” EntityDef )* 
EntityDef ::= Ident [WhereExpression] 
 
The EntityDefList defines a list of  vertices or edges that are combined by a logical 

OR.  For example 
 
   vertex  {person, location, plot} 
 

means a “person” OR a “location” OR a “plot” vertex. 

filter  ( InputGraph, VertexFilter, EdgeFilter );  
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The where clause may also include expressions on the vertex degree: 

 

If the EdgeFilter is defined by the reserved word none, no edges will be returned.  A 

filter query with an EdgeFilter defied by the reserved word none will only return 

vertices.  For example, the query below will return all of the vertices in the InputGraph of 

type person. 

 

The any  keyword may be used in a VertexFilter expression as well.  The example that 

follows assumes an ontology that includes the graph below: 

 

The filter query below will return any vertex that is connected to a travels_to  or a 

shipped_to  edge.  In the case of this ontology, the result graph will consist of a graph 

of country, person, and product vertices, connected by “travels_to” and “shipped_to” 

edges. 

 

Note that the sub-graph returned by the filter function will only contain edges that are 

connected to vertices that are defined in the VertexFilter.  In the query below, if there are 

no edges that connect shipment vertices to other shipment vertices, the query will return a 

graph that consists of shipment vertices, without edges. 

 

filter  (“MyBaseGraph”, 
        vertex  { shipment }, edge  { any  }); 

filter  (“MyBaseGraph”, 
        vertex  { any  }, 
        edge  { travels_to, shipped_to }); 

filter  (“MyBaseGraph”, 
        vertex  { person }, edge  { none  }); 

A portion of an ontology 

vertex  { person 
         where  name = “Tirza M. Kaplan” and  
               birth_city = “San Francisco” and  
               birth_date = “1962-04-25”, 
         organization 
         where  name = “Southern California Institute of Architect ure”}  

vertex { person where degree_in < 16 }  

Country 

Person Product 

Travels_To Shipped_To 
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If the ontology defines an edge that connects “person” vertices and “shipment” vertices, 

then the filter function below would return all “person” and “shipment” vertices, plus any 

edges that connected them (note that the filter function is not directional, the edge could 

be from a “person” vertex to a “shipment” vertex or from a “shipment” vertex to a 

“person” vertex. 

 

Adjacency 

The adjacency function is outlined below: 

 
The adjacency function grows the GrowGraph argument by adding vertices that are one 

edge away from the vertices in the GrowGraph.  In the example below, the GraphGraph 

is composed of three types of vertices: A, B and C.  The adjacency function adds vertices 

of types X, Y and Z (connected by any edge) to the GrowGraph. 

 

 
 

The queries below might be used to calculate the adjacency in the diagram above.  The 

filter query selects a graph composed of vertices of type A, B or C.  This graph is 

associated with the graph name “growGraph”.  This graph is then used as the GrowGraph 

argument to the adjacency function.  The result is the original GrowGraph, plus the new 

vertices and edges.  

 

“growGraph” = filter  (“AlphabetGraph”, 
                 vertex  {A, B, C} edge  { any  }); 
 
adjacency (“AlphabetGraph”, “growGraph”,  
     vertex {X, Y, Z}, edge { any  } ); 

A B 

C 
A B 

C 
X 

X 

Z 
Y 

Z 

Y 

                                        adjacency filter arguments 
 
adjacency  ( UniverseGraph, GrowGraph, VertexFilter, EdgeFilter); 

filter  (“MyBaseGraph”, 
        vertex  {person, shipment} edge  { any  }); 
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The query language allows functions to be used as arguments to other functions.  Instead 

of using a named graph for the GrowGraph argument in the adjacency function, the 

filter function could be used as the argument.  This is shown in the example below: 

 
The graph that results from adding vertices and edges to the GrowGraph must be 

contained within the UniverseGraph.  If the GrowGraph and its adjacent vertices and 

edges lie outside of the UniverseGraph, the adjacency function will return the empty 

graph.   

The adjacency function can be thought of as being logically composed to two operations: 

1. Add the adjacent vertices and edges defined by the vertex and edge filters to the 

GrowGraph argument. 

2. Intersect the expanded GrowGraph with the UniverseGraph to produce the final 

result.  Only those vertices and edges that fall within the UniverseGraph will be 

included in the result. 

The VertexFilter and EdgeFilter arguments may have the value any, which indicates that 

any vertex or edge can be included in the adjacency shell that is added to the 

GrowGraph.   

Syntactically the EdgeFiler is also allowed to have the value none, but this will result in 

a semantic error, since an adjacency without any edges makes no sense. 

The example below will find all of the vertices and edges that are adjacent to the vertices 

of type person  in the graph. 

 

The adjacency function adds to the GrowGraph.  It does not filter it.  The vertices and 

edges in the GrowGraph do not have to be included in the vertex and edge filter 

arguments to be included in the function result. 

The VertexFilter and EdgeFilter arguments in the adjacency function are used to control 

which edges and vertices are added to the GrowGraph argument.  For example, the query 

below will return two vertices of type person , with edges of type lives_in  

connecting to vertices of type city  (i.e., the cities that Borroughs and Warhol lived in). 

 “PersonAdj” = adjacency  (“MyBaseGraph”, 
                          filter  (“MyBaseGraph”, 
                             vertex  {person}, edge  { none  }),  
                         vertex  { any }, edge  { any }); 

adjacency (“AlphabetGraph”,  
          filter  (“AlphabetGraph”, 
               vertex  {A, B, C} edge  { any  }), 
     vertex {X, Y, Z}, edge { any  } ); 
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Pattern Queries 

A semantic graph can be searched for patterns that may reveal important information.  An 

example of a pattern is shown below (patterns are shown with square boxes, the graph 

instance data is shown with ovals).  In this pattern only the types for the vertices and 

edges are specified.  However, attribute constraints could also be included (each vertex is 

defined by a VertexSpec). 

 

A base graph might include the set of graphs shown below: 

 

When the pattern above is matched against these graphs, there would be the following 

results: 

 

 

Note that the “Company” vertices were not returned, since they were not included in the 

pattern definition. 

adjacency ( “MyBaseGraph”, 
          filter  ( “MyBaseGraph”, 
                     vertex  { person where name = “William S. Burroughs”, 
                              person where name = “ Andy Warhol” }  
                     edge  { none }), 
            vertex  { city } 
            edge  { lives_in } ); 

City 
Cairo 

Company 
Bordeaux Vin 

Person 
Al Bert 

City 
Paris 

Travels_To 

Travels_To 

Located_In 

Company 
Acme Widgets 

City 
New York 

Person 
Fred 

City 
Munich 

Travels_To 

Travels_To 

Located_In 

City 
Cairo 

Person 
Al Bert 

City 
Paris 

Travels_To 

Travels_To 

City 
New York 

Person 
Fred 

City 
Munich 

Travels_To 

Travels_To 

Travels_To 

Travels_To 
A:Person 

C:City 

B:City 
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Pattern Query Syntax 

The pattern query is outlined below: 

 

An example of a pattern query is shown below: 

 

This pattern is show in the diagram below: 

 

 

An example of a graph pattern that would match this query is shown below: 

 

 

pattern( “MyBaseGraph”, 
         A:company edge{ located_in } B:location, 
         A:company edge{ employs } C:person, 
         A:company edge{ manufactures } D:product ) ; 

C:Person 

A:Company B:Location 

D:Product 

located_in 

manufactures 
  employs 

PatterFunction: pattern “(“ UniverseGraph “,” Patte rnEdgeSpec “)” “;” 
 
PatternEdgeSpec: PatternLinkDef (“,” PatternLinkDef  )* 
 
PatternLinkDef: PatternVertex EdgeFilter PatternVer tex 
 
PatternVertex: Ident “:” ( any  | EntityDef) 
 
EdgeFilter ::= [ not ] edge  EdgeSpec 
 
VertexSpec ::= “{“ any  | EntityDefList “}” 
 
EdgeSpec ::= “{“ any  | none  | EntityDefList “}” 
 
EntityDefList :: = EntityDef (“,” EntityDef )* 
 
EntityDef ::= Ident [WhereExpression] 
 

Company:IBM 

Product:360 Person: T.J.Watson 

Location:Yorktown 

located_in 

manufactures 
 employs 
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Note that the link definitions in the pattern are joined by an implicit and operation.  The 

pattern above is composed of: 

A:company edge{ located_in } B:location   
and  
A:company edge{ employs } C:person.  

The identifiers that are associated with each vertex type in the pattern specification define 

an instance of that type in the graph.  A graph might have many unique instances of the 

type person .  In a pattern A:person  and B:person indicate two different person 

vertices.  In the pattern below a single Person vertex is joined to two Country vertices by 

“Illegal_Entry” edges.  In this example, the Country vertices are different.  A pattern like 

this might be used to find people who have illegally entered two different countries. 

 

The pattern query would be: 

 

In some cases a pattern query needs to be able to specify that a link does not exist.  For 

example, if we want to find all of the people who live together but are not married, a 

query like the one diagrammed below could be used. 

 

The X over the edge in the diagram indicates that the edge that should not be included.  

The pattern query is shown below: 

 

Note that the identifiers A and B specify the same person in each of the two links.   

pattern (“MyBaseGraph”, 
          A:Person edge{Lives_with} B:Person, 
          A:Person not  edge{Married_to} B:Person ); 

pattern (“MyBaseGraph”, 
         A:Person, edge{ Illegal_Entry } B:Country,   
         A:Person, edge{ Illegal_Entry } C:Country ); 

Illegal_Entry 
A:Person B:Country 

C:Country 

Illegal_Entry 

A:Person B:Person 

Lives_with 

Married_to 
X
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There could also be cases where the objective of a query would be to return a pattern that 

has a link of type Lives_at or a link of type Works_at, as shown in the diagram below: 

 

The pattern query is: 

 

The edge expression in this pattern is similar to the edge filter used in the filter and 

adjacency functions.  The edge expression combines edge definitions with an implicit or 

operation. 

Because of the edges that are joined by an or operation, the pattern function above 

specifies three patters: 

1. A:Person à  Lives_at à  B:Address 

2. A:Person à  Works_at à  B:Address 

3. A:Person à  Lives_at à  B:Address, A:Person à  Works_at à  B:Address 

Annotating the Graph 

Queries specified in the graph query language can be submitted from a language like 

Java.  A result set from one query can be operated on by another query.  This allows 

complex graph algorithms to be implemented, where control takes place in Java.  Some 

of these algorithms become easier (or practical) when the graph can be annotated with 

information.  For example, an algorithm that calculates paths might use successive 

adjacency operations and mark each adjacency shell as it’s calculated.  The new 

adjacency shell can be calculated as those vertices that are connected to the current shell 

but are unmarked.  This forces the adjacency shell to go only one way when there are 

bidirectional links. 

Annotation will be added to a future version of the query language, once the base 

language has been implemented. 

Support for Query Execution 

This section provides a brief overview of query language.  The focus is on the primitive 

data objects and operations needed to execute the query language in a parallel 

environment. 

A SIMD View of Query Language Support 

In most cases, the operations that support the query language described above are Single 

Instruction, Multiple Data (SIMD) operations, where the definition of “instruction” is 

pattern (“MyBaseGraph”, 
         A:Person, edge{Lives_at, Works_at} B:Addre ss ); 

A:Person B:Address 

Lives_at Works_at 

A:Person B:Address 
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broadly defined to include high level operations.  A distributed graph engine would 

implement a common set of operations.  In most cases the query execution control would 

send commands to the processors to execute the same operation on each processor. 

Objects used to represent intermediate results 

Although the final set of graphs returned by a query may not be large, the intermediate 

steps taken in processing the query may process huge amounts of graph data across the 

distributed system.  Intermediate results are left on the distributed processors.  Only when 

the query has been processed is the final result returned to the client. 

As discussed above, the input of a query is a named graph.  This graph is filtered by the 

query, resulting in another named graph.  The base graph is just another instance of a 

named graph.  This means that the result of a query sub-expression should be stored in an 

instance of the same objects used to store the larger base graph.  This allows a query to be 

executed against either the base graph or a sub-graph. 

Edge Table 

The connections between the vertices on a local processor and the off processor 

connections are represented by an edge table which exists for named graph.  A row in the 

edge table is shown below: 

edge_id edge_type src_id src_type src_loc dest_id dest_type dest_loc 

Here the src_id and dest_id are the cryptographic hashes for the source and destination 

vertices.  The src_loc and dest_loc are the locations for these vertices (where one location 

is “local”).  When there is an out-going or in-coming edge from one distributed processor 

to another, there will be a dest_loc or src_loc that is not the local system. 

Vertex Table 

Every edge table for a named graph is paired with a vertex table.  The vertex table 

consists of a vertex identifier and a vertex type.  A row in this table is shown below: 

vertex_id vertex_type 

 

Note that the attributes of a vertex are not stored in the vertex table, but in a table that is 

associated with each vertex type. 

Distributed Graph Operations 

Vertex Select 

The simplest graph operation is a vertex select.  A vertex select is very similar to an SQL 

select operation: “select * from table where column_expression”.  A vertex select will 

usually be a sub-expression in a larger query.  Each processor in the distributed system 

will execute the vertex select on its local portion of the graph.  The result will be placed 

in a vertex object, which will then be used in higher level query sub-expressions. 
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Adjacency 

The adjacency query outlined above can be implemented using three operations: 

1. Calculate the adjacencies for each vertex in the GrowGraph. 

The result of this calculation will be a vertex table that contains the center vertex and 

the adjacency vertices on each processor.  The edge table will consist of the edges 

that join the center vertex and the adjacent vertices, on that processor, plus the edges 

to external processors. 

Before the adjacencies can be calculated, information about the GrowGraph vertices 

must be sent to the distributed processors.  There are two ways this could be done: 

1. The information about the GrowGraph vertices could be sent to every distributed 

processor.  This would require collecting the information about the GrowGraph 

and then broadcasting it to each processor.  This has the drawback of 

bottlenecking the calculation on the “gather” operation. 

2. A processor with one or more GrowGraph vertices can discover from the edge 

table which processors host the adjacent vertices.  The information about the 

GrowGraph vertices can be sent selectively to these processors. The distributed 

nature of this operation makes this an attractive approach and this is the method 

proposed here. 

For an edge that crosses between processors, send the GrowGraph vertex to the 

remote processor.  The remote processor will build a local vertex and edge table.  

Note that we only need to send the vertex ID and type, since the remote processor has 

an edge table that records which local vertices have incoming edges for that center. 
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3. Filter the vertices and edges on the basis of the vertex and edge filters.  This 

operation can be done in SIMD fashion on each of the processors, filtering the 

vertex and edge tables. 
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